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Implementation and Analysis of the 
Todd-Coxeter Algorithm 

By John J. Cannon, Lucien A. Dimino, George Havas and Jane M. Watson 

Abstract. A recent form of the Todd-Coxeter algorithm, known as the lookahead 
algorithm, is described. The time and space requirements for this algorithm are shown 
experimentally to be usually either equivalent or superior to the Felsch and Haselgrove- 
Leech-Trotter algorithms. Some findings from an experimental study of the behaviour of 
Todd-Coxeter programs in a variety of situations are given. 

1. Introduction. The Todd-Coxeter algorithm [20] (TC algorithm) is a sys- 
tematic procedure for enumerating the cosets of a subgroup H of finite index in 
a group G, given a set of defining relations for G and words generating H. At the 
present time, Todd-Coxeter programs represent the most common application of 
computers to group theory. They are used for constructing sets of defining relations 
for particular groups, for determining the order of a group from its defining relations, 
for studying the structure of particular groups and for many other things. 

As an example of the use of the algorithm, consider the following family of 
defining relations, Men(n), due to Mennicke: 

Men(n) = gp(a, b, c, d, eI a4 = b= C = d2 = = abcd 

= ede-la-lda = ea~lbcbae~lb~la~lc~lab1l 

= ecace-la-1b-1&-lb-la = (bcr = 1). 

Using Todd-Coxeter programs to find the index, in Men(n), of the dihedral 
subgroup (b, c) of order 2n, we have found that IMen(1)I = 16, IMen(2)I = 256, 
jMen(3)j = 2,688, jMen(4)j = 36,864 and IMen(5)I = 551,040. The determination 
of jMen(5)j was done using secondary storage and occupied an IBM 360/50 for 
79.5 hours. 

It is over 10 years since the first published description of a Todd-Coxeter program 
appeared (Felsch [8]). Advances in the understanding of the underlying processes 
and the use of more sophisticated implementation techniques now enable us to 
produce much faster programs. It thus appears appropriate to give an account of 
a recent implementation of the TC algorithm. 

In order to gain a better understanding of the algorithm, we have undertaken 
an extensive investigation of its behaviour. In this paper, we present a summary of 
our findings concerning 
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(a) the comparative behaviour of the three most commonly programmed forms 
of the algorithm, and 

(b) the behaviour of the algorithm with respect to different classes of defining 
relations and different choices of subgroup. 

In Section 2, we discuss various forms of the TC algorithm, while Section 3 
contains a formal description of the lookahead TC algorithm. Section 4 contains 
the results of our investigation of the TC algorithm. 

A general account of earlier TC programs, together with some applications, 
can be found in Leech [11]. 

2. Algorithm Design. Suppose 

G = gp(gl, i * gr I R g. ) = * * = Rs(gl, . * g. ) = 1) 

and let H = (h1, * , ht) be a subgroup of G, where the h,'s are words in the g i's. 
If [G: H] = n, the right cosets of H in G will be denoted by the integers 1 to n. The 
coset consisting of H itself will be always represented by the integer 1. We shall 
write (i)gi to denote the coset obtained upon multiplying coset i on the right by 
generator g j. 

Definition 1. If m is the number of cosets of H currently defined and r is the 
number of generators in the given presentation for G, then the partial coset table T 
is an m X 2r array whose (i, j)th element is defined as follows. Suppose i is a coset 
of H and si = g, or g- 1 for some generator g,. Then, T(i, j) = k, if (i)s i is known 
to be coset k (i.e., if (i)s = k), and T(i, j) = 0, if (i)s i is unknown. Thus, the columns 
of T correspond to the generators of G and their inverses, while the rows of T cor- 
respond to the currently defined cosets. 

In practice, if a generator is an involution, then T contains a single column for 
both the generator and its inverse. If 1, * , m are precisely the complete set of 
cosets of H and no entry of T is zero, then T is called the coset table for H in G. 
Since it will be clear from context when we are discussing a partial coset table rather 
than a coset table, we shall use the term coset table in both cases. 

Let w = s, . . . Sk, where si = g1 or g- 1 for some generator gl, be a word and 
let i be a coset. Assuming that the coset (i)sl ... s i is defined, the coset (i)sl ... sis i+ 
is said to be defined if and only if T((i)sl ... s i, s + ) is nonzero, in which case 

(i)sl * * sjsj+1 = T((i)sl . . si, si+,). 

If w is the empty word, then (i)w is defined to be i. Sometimes, we shall indicate 
that (i)w is not defined, by writing (i)w = 0. 

We shall usually denote a word in the generators of G by a subscripted w and 
a single generator or its inverse by a subscripted s. 

Definition 2. Let R be a relator in G and let i be some coset of H. We now proceed 
to define the process of applying relator R to coset i with respect to some partial 
coset table T by defining a transformation of T corresponding to each of the following 
four possibilities: 

(a) R = w and (i)w = i. Here, T is left unchanged. 
(b) R = W1Sw2, where w, is a subword of R, s is not the identity and w2 is a subword 

of R right adjacent to s, such that (i)wl = j, (i)w- 1 = k but T(j, s) = T(k, s 1) = 0. 
Note that w1 or w2 may be empty. We then set T(j, s) = k and T(k, s 1) = j. This is 
called a deduction. 



THE TODD-COXETER ALGORITHM 465 

(c) R = w3w4, where w3 is a subword of R and w4 is a subword of R right adjacent 
to w3, such that (i)w3 = j and (i)w-2 = k with j 5- k. Note that one of w3 or w4 may be 
empty and that w3 is chosen so that its length is maximal. This means that j and k 
represent the same coset and we say that j and k are coincident, or alternatively that 
one of the cosets j and k is redundant. We write j -- k. In this case, one of the cosets j 
and k must be deleted from T and this is carried out by a process called the coincidence 
procedure which will be specified later. 

(d) R = w5w6w,, where w5 and w, are nonempty subwords of R such that (i)w5 = 

(i)w71 = 0. In this case, T is left unchanged. 
In cases (a), (b) and (c), we say that the R-cycle at coset i is complete, while in 

case (d), we say that the R-cycle at coset i is incomplete. 
In terms of the concepts just introduced, we may summarize the action of the 

TC algorithm as follows. First, cosets are defined so that each generator h, of H 
forms a cycle at coset 1. Then, each given relator R, of G is applied to each coset. 
If some Ri-cycles are incomplete, then, at some stage, new cosets must be introduced. 
The process terminates when every Ri-cycle is complete at every coset currently 
defined. 

For further background information, including a description of the basic algo- 
rithm for processing coincidences, the reader is referred to the paper of Leech [11]. 
Proofs that various versions of the algorithm terminate in the case of finite index 
have been given by Trotter [21], Mendelsohn [17] and Dimino [7]. 

The central problem in programming the TC algorithm is finding a satisfactory 
rule for introducing new cosets. As the range of application of a Todd-Coxeter 
program is thus far limited by the amount of storage required to hold the partial 
coset tables generated during an enumeration, one tries to define cosets in such a 
way that as few redundant cosets as possible are introduced. 

It is easily seen that the application of the TC algorithm to certain presentations 
will necessarily require the introduction of redundant cosets. For example, the group 

G = gp(a I a' = a' = 1, p and q prime, p 5 q) 

is trivial but min(p, q) cosets must be defined before the relation a = 1 are discovered. 
Indeed, given any integer m, one can produce a presentation for the trivial group 
which requires the definition of at least m cosets before the TC algorithm is able to 
deduce that the group is trivial. Then, by adding such a presentation of the trivial 
group to some presentation of a group G, we can produce an arbitrarily bad pre- 
sentation for G. 

Thus, it is fruitless to expect to be able to produce a version of the TC algorithm 
which performs well even for all presentations of a single group. However, the 
majority of presentations which arise in practice turn out to be reasonable from the 
point of view of the TC algorithm and so we concentrate our efforts on producing 
forms of the algorithm which operate as efficiently as possible on this class of presen- 
tations. 

The two most popular strategies for introducing new cosets are the Felsch method 
[8], which defines fewer redundant cosets at the expense of execution time, and the 
Haselgrove-Leech-Trotter method [11], [21] which usually defines more redundant 
cosets but which typically runs faster than the Felsch method. The Haselgrove- 
Leech-Trotter method was developed by Haselgrove in 1953 and later adapted by 
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Leech, Trotter and others. For brevity, we shall refer to it simply as the HLT method 
or HLT algorithm. 

Suppose that the definition (i)s = k has just been made. The Felsch procedure 
is to apply all significantly different cyclic permutations of relators beginning with 
si, to coset i. This process is repeated with any deductions, (i')s' = k', which may 
have been discovered, until all possible consequences of the original definition have 
been discovered. Only at this stage, will a new coset be introduced, if necessary, 
and then by defining it so that the first vacant position in the coset table is filled. 
In the HLT method, relators are applied to the cosets in the order in which the 
cosets were introduced. If for some coset i and relator R, the R-cycle at coset i is 
incomplete, sufficient new cosets are immediately introduced so as to complete the 
R-cycle at i. 

Another form of the TC algorithm has been discussed by Mendelsohn [17]. 
However, it is much too inefficient to be considered for machine implementation 
and so it will not be discussed further. 

In order to be able to compare various forms of the TC algorithm, we introduce 
some measures which are associated with the enumeration of the cosets of a subgroup 
H in a group G by a specific form of the TC algorithm. Suppose 

I is the index of H in G; 
M is the maximum number of cosets defined at any instant during the enumeration; 
T is the total number of cosets defined in the enumeration; 
t is the execution time; 
r = M/A 
e = T/IL 
We shall indicate the form of the TC algorithm to which one of the above measures 

refers by a subscript: F for the Felsch procedure and H for the Haselgrove-Leech- 
Trotter procedure. 

The number r can be interpreted as measuring the amount of space required 
to perform the enumeration, over and above that required to store the coset table 
for H in G. As noted above, coset enumerations with respect to certain presentations 
will necessarily involve redundancies, so that it is not possible to design a coset 
enumeration algorithm having r = 1 for all possible coset enumerations. So, current 
efforts are directed towards producing fast programs for which r is close to 1 for 
large classes of presentations. It is obvious that usually TH >- T and it is observed 
in practice that for a large proportion of presentations TH is significantly greater 
than TF. 

Of the machine versions of the TC algorithm which have thus far been proposed, 
the Felsch method usually defines the fewest cosets as it tries to extract the maximum 
amount of information each time a new coset is defined. However, a form of the 
algorithm has been developed which performs the majority of enumerations very 
quickly but which rarely requires significantly more space than the Felsch algorithm 
in order to complete an enumeration. As this form of the Todd-Coxeter, which we 
shall call the lookahead method, gives the best all round performance, we shall describe 
it in some detail in this and the next section. 

A type of lookahead was used by Leech in 1959 (Leech [11, p. 265, last paragraph]) 
but this form of the TC algorithm did not really begin to develop until Guy [9] wrote 
his lookahead TC program for the ATLAS at Cambridge in 1967. 
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The lookahead method operates in two distinct phases: a defining phase and 
a lookahead phase. As long as the number of cosets defined at any instant is less 
than a specified number ML, the algorithm remains in the defining phase. In this 
phase, the enumeration proceeds by the HLT method. When, however, the number of 
cosets defined exceeds the limit ML, the algorithm switches to the lookahead phase. 
Here, relators are applied to cosets as before, but if a relator cycle is incomplete 
at some coset, no new cosets are defined to complete the cycle. The aim is to discover 
a large number of deductions and coincidences without introducing any new cosets. 
If the enumeration is still incomplete at the end of the lookahead phase and if sufficient 
storage space is available, we return to the definition phase in which we remain 
until either the enumeration completes or the number of cosets defined again passes 
some preset limit. Thus, the algorithm alternates between the defining phase and 
the lookahead phase. 

Let us denote a lookahead form of the TC algorithm by the letter L. If the look- 
ahead phase is not used, then FL = 7H. When lookahead is used, FL varies with the 
value of ML supplied. Let us denote the values of FL and EL, when ML is the minimum 
possible for the enumeration to complete, by FL and EL, respectively. Experimentally, 
it is found that FL _ TF. While EL is often much greater than E, this is not felt to 
be an important consideration because of the faster processing of cosets in a look- 
ahead program as compared to a Felsch program. 

To summarize, the lookahead form of the TC algorithm can usually perform 
coset enumerations faster than other machine algorithms used at present. 

On the other hand, if storage space is at a premium, a lookahead program will 
not require significantly more storage in order to complete an enumeration than a 
Felsch program. Indeed, the lookahead algorithm often requires less space to complete 
an enumeration than the Felsch algorithm! 

There are a number of possible ways of arranging the lookahead. Guy [9], for 
example, divides his available space up into a number of blocks and applies look- 
ahead before allowing the coset table to extend into a new block. We shall refer to 
this technique as bumping. If the optimum block size is chosen, this technique will 
result in extremely rapid enumerations. On the other hand, a poor choice of block 
size can result in inefficient enumerations. The other possibility, of course, is to let 
the coset table exhaust the available space before applying lookahead. Also, when 
the program is in the lookahead phase, it can return to the defining phase as soon 
as a single coincidence has been discovered (incremental lookahead) or only after 
all relators have been applied to all cosets currently defined (complete lookahead). 

If all cosets have been processed in the lookahead phase of an incremental look- 
ahead program, the lookahead begins again with the first coset not yet processed 
in the defining phase. A single application of lookahead, of either kind, to every 
coset not yet processed in the defining phase is called a lookahead pass. Generally, 
both incremental and complete lookahead programs are arranged so that they 
terminate when either the enumeration completes or a lookahead pass fails to discover 
a single coincident coset. In the case of complete lookahead, a considerable amount 
of time can sometimes be saved in situations where the enumeration does not com- 
plete by specifying that execution is to terminate if less than a certain number of 
coincidences are discovered during an application of lookahead. 

We have programmed both the complete and incremental forms of the look- 
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ahead algorithm. Comparing their behaviour on a series of test examples, we have 
discovered that the following hold: 

(i) The two techniques have equivalent power in the sense that the minimum 
amount of store necessary to complete a given enumeration is the same for both. 

(ii) The execution time for the two techniques generally differs by less than 
15 per cent. In some cases, the difference favours incremental lookahead and, in 
other cases, it favours complete lookahead. The reason for this is that if, at the time 
lookahead is called, sufficient cosets have already been defined for the enumeration 
to complete, then incremental lookahead often defines further unnecessary cosets 
before reaching a "critical" coincidence, while complete lookahead would discover 
this coincidence before defining any further cosets. On the other hand, if insufficient 
cosets are defined at the time lookahead is called, then it is slightly more economical 
to define new cosets as soon as space is freed by the discovery of a coincidence. 

Since we have so far been unable to distinguish between complete and incremental 
lookahead on the basis of performance, we have chosen to describe in detail a com- 
plete lookahead TC algorithm in the next section because the algorithm is slightly 
simpler. The lookahead statistics given in Section 4 refer to this algorithm. An 
implementation of an incremental lookahead program is described in Dimino [7]. 

We conclude this section by mentioning other possible strategies which deserve 
further investigation. The lookahead algorithm can be modified slightly to allow 
the lookahead phase to use relators (e.g. redundant relators) which are not used in 
the defining phase. More fundamentally, in the HLT algorithm, instead of applying 
all the relators to a particular coset at the same time, one could allow the application 
of long relators to cosets to lag some distance behind the application of the short 
relators. (See Section 4.2.) 

3. A Lookahead Todd-Coxeter Algorithm. In this section, we describe in 
some detail an implementation of a lookahead version of the Todd-Coxeter algo- 
rithm. The ANSI FORTRAN text of the program is available from the authors. 

3.1. Data Structures. Considerable gains can be achieved in the run time effi- 
ciency of a Todd-Coxeter program by careful design of the data structures. The 
four main components are 

(a) generators for H and relators for G, 
(b) coset table, 
(c) active row list, 
(d) coincidence queue. 
(a) Generators for H and Relators for G. These two sets of words are stored in a 

one-dimensional array SGREL in the following way. The generators of G and their 
inverses are mapped sequentially into the integers beginning at 3, except, if a gen- 
erator is involutory, then both it and its inverse are assigned the same integer. The 
involutory relator is not stored as it is not needed. The representation of generator 
g, of G will be denoted g, and that of g, will be g-1. Then, each word is stored as 
a string in the g,, g-1. Prefixed to each string is the length of the string. 

Example. The presentation s3 = t2 = (s- Itst)2 = 1 is stored as the one-dimen- 
sional array 

3, 3, 3, 3, 8, 4, 5, 3, 5, 4, 5, 3, 5 
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where s -- 3, s-1 - 4, t -- 5, t-1 - 5. 
In addition to this array, a table of inverses INVCOL is stored. The entries of 

INVCOL are defined by the rule INVCOL (s,) = s71 where s, runs through the 
generators of G and their inverses. 

(b) Coset Table. As stated in Definition 1, the partial coset table T contains a 
column for each generator and the inverse of each noninvolutory generator. In 
practice, the columns of T are indexed by the g, since the first two columns of the 
two-dimensional array SPACE in which T is stored are used for the active coset 
list. Having a single column for involutory generators, clearly results in considerable 
space saving and also some time saving since the relation g' = 1 need not be processed, 
as it comes implicitly from the column sharing by g, and g-1. The space saving is 
most important since the range of application of a TC program depends critically 
upon the amount of core storage available rather than upon execution time. On 
word machines it is often necessary to pack as many coset table entries as possible 
into each machine word. [The coset table entries are actually pointers to other cosets 
(rows) of the table. The name assigned to a coset is the number of the corresponding 
row of T. (Thus, on a CDC 6000 series machine, for example, three coset table 
entries may be packed into each machine word.)] 

(c) Active Row List. When coincidences are discovered during an enumeration, 
certain rows of the coset table become inactive and, hence, available for reuse. Early 
programs collected this free space from time to time by moving all the active rows 
together at one end of the store while simultaneously renumbering the active cosets 
and coset table entries. This, however, is a time consuming procedure and so more 
recent programs link together the active rows of the coset table in a list structure. 
One cannot avoid linking the active rows by merely marking inactive rows and 
adding them to a list of free rows, available for reuse, for it is necessary to know 
which active rows have been processed in the defining phase, and which have been 
processed in the lookahead phase, etc. 

The linking together of the active rows of T is effected by means of the active 
row list which is stored in a two-dimensional array A (occupying the first two columns 
of the array SPACE), where the ith row of A corresponds to the ith row of T. If the 
ith row of T is active, A(i, 1) points to the previous active row while A(i, 2) points 
to the next active row. The backward chaining is necessary since one must link 
around a row of T when it becomes inactive. (The contents of A(i, 1) and A(i, 2) 
are actually array indices, but we shall use the term pointer for brevity.) 

Initially, the rows of A are unlinked, and the rows of T are available sequentially 
for the next coset to be defined. When an active row of T becomes inactive, the 
corresponding row of A is removed from the active row list and, instead, linked to 
the front of FREEL, the free row list. Once all of the sequentially available rows 
of T are used, rows may be recovered from FREEL and reused. 

(d) Coincidence Processing. The discovery of a coincidence usually leads to the 
discovery of further coincidences which must be stored to await processing. The 
allocation of space to store these coincidences presents a considerable problem 
since, for example, in cases of total collapse, the number of coincidences which must 
be stored may approach the number of cosets currently defined. However, it turns 
out that there is always sufficient space in the array A to store all possible coincidences. 

Suppose i < j are cosets found to be coincident. As row j of T is to be removed 
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from the active row list, the two corresponding fields of A are spare. So a flag to 
indicate that coset j has been found redundant is placed in A(j, 2), together with a 
pointer to row i, while a pointer to the next member of the queue Q of coincidences 
awaiting processing is placed in A(j, 1). 

Coincidences are added to Q in the following way. Suppose we deduce i - j. 
We examine A(j, 2) to see if row i is already marked as coincident. If j is marked 
as coincident with k (say), we reset j to k and go back and examine the new A(j, 2). 
We do the same with i, and finally reach i' - f' where neither i' nor j' is already 
coincident. If i' = f', then the original coincidence i - j yields no new information 
so nothing need be added to Q. Otherwise, choosing i" = min(i', f'), j" = max(i', f'), 
we mark j" as coincident with i" and add j" to Q. Finally, when the coincidence 
is fully processed A(j, 2) is linked to the free space list. 

In this way, coincidences may be queued and processed so that no extra space 
is required. 

3.2. Coset Enumeration Algorithm. We now give a formal description of the 
algorithm. 

The algorithm first applies the nontrivial generators of H (if any) to coset 1, and 
then begins applying the defining relators to the cosets from 1 on until either the 
enumeration is complete or the available space is exhausted. If the latter occurs, 
lookahead is performed and, provided some coincidences are discovered, control 
is then returned to the defining phase. If no coincidences are found in lookahead, 
the enumeration terminates with the coset table incomplete. 

A coset i is said to be closed if all the relator cycles at coset i are complete. The 
action of the defining phase is to systematically close the defined cosets from 1 on- 
wards in the order defined by the active row list. If lookahead discovers a closed 
coset i, the coset's position in the active row list is altered so that coset i becomes 
the last coset closed in the defining phase. This sometimes saves quite a lot of un- 
necessary work in the defining phase while the extra overhead is negligible. 

The coset enumeration program consists of two central subroutines: 
ENUM(ERATE) and COINC(IDENCE), together with a driving program TODCOX. 

TODCOX. This routine initializes the various data structures and performs 
the function of control routine. 

(1) [Initialize] Input the generators for H and the defining relators for G; Set up 
pointers and tables; Allocate storage for the adjustable array SPACE. 

(2) [Perform enumeration] Call ENUM. 
(3) [Next problem] Go to (1) for next problem if desired, otherwise exit. 

ENUM(NMAX, NCOL, SPACE). This routine systematically enumerates the 
cosets of H in G. The routine operates in three modes: 

(a) Apply subgroup generators to coset 1, mode SG. 
(b) Apply relators in defining phase, mode DP. 
(c) Apply relators in lookahead phase, mode LA. 

When the enumeration is complete, or alternatively when the storage available is 
exhausted, the index of H in G or an overflow message is printed with some execution 
statistics. Control then returns to TODCOX. 

IFRONT is the last coset reached in the forward scan. 
IBACK is the last coset reached in the backward scan. 
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K points to beginning of current word in SGREL. 
L points to end of current word in SGREL. 
M points to position in current word in forward scan. 
N points to position in current word in backward scan. 
CLOSED is a flag used to indicate if a coset is closed in the lookahead phase. 
(1) [Initialize] Initialize pointers and counters; If there are no nontrivial subgroup 

generators go to (8); Else set mode type and parameters to SG. 
(2) [Initialize scan of next word] K -- pointer to first symbol of word; L -- pointer 

to last symbol of word; IFRONT, IBACK *- coset currently being processed; M *- K. 
(3) [Forward scan] I <- T(IFRONT, SGREL(M)); If I = 0, N *- L and go to 

(4); (forward scan ends); Else IFRONT I- I; M -- M + 1; If M > L go to (7); (for- 
ward scan reaches end of word); Else go to (3). 

(4) [Backward scan] I -- T(IBACK, INVCOL(SGREL(N))); If I = 0, go to (5); 
(backward scan can go no further); Else IBACK +- I; N +- N - 1; If N < M go to 
(7); (backward scan meets forward scan); Else go to (4). 

(5) [Relator incomplete] If N = M + 1, go to (6); (deduction); Else if mode is 
LA go to (10); (do not define new cosets in lookahead phase); If no cosets available 
go to (9); (space exhausted so commence lookahead); Else I *- next coset available; 
Initialize new row and update statistics; T(IBACK, INVCOL(SGREL(N))) *- I; 
T(I, SGREL(N)) *- IBACK; (define new coset); Go to (4); (return to backward 
scan). 

(6) [Only one gap so complete cycle with deduction] 

T(IBACK, INVCOL(SGREL(N))) -- IFRONT; 

(deduction); If T(IFRONT, SGREL(N)) # 0, IFRONT *- T(IFRONT, SGREL(N)) 
and go to (7); Else T(IFRONT, SGREL(N)) <- IBACK; (another deduction); 
IFRONT <- IBACK. 

(7) [Relator complete] If IFRONT # IBACK call COINC; (process nontrivial 
coincidence); If more words left in set for this phase go to (2); If mode is LA go to 
(1 1). 

(8) [Start or continue defining phase] If mode is SG reset mode and parameters 
to DP; If no more cosets to be processed go to (13); (enumeration complete); Get 
next coset to be processed; Reset pointers to first word of set; Go to (2). 

(9) [No space left in DP] Output overflow message; Reset mode to LA. 
(10) [Incomplete scan in lookahead] CLOSED -- . FALSE .; (note coset is not 

closed); If more words left in set go to (2). 
(11) [End of set of words in LA] If CLOSED = . TRUE ., link current coset 

to become last closed coset to avoid reprocessing in DP; If no more cosets to be 
processed go to (12); Else reset pointers to first word of set; CLOSED -- . TRUE.; 
Go to (2); (continue lookahead). 

(12) [End of LA] Output message to signify end of LA; If no space available 
return; (enumeration terminates); Else reset current coset to last closed coset and 
mode to DP; Reset pointers to first word of set; Go to (2); (return to DP). 

(13) [Enumeration complete] Output index of H in G and statistics; Return. 

COINC (NMAX, NCOL, SPACE, KX, KY). Given a pair of coincident cosets 
by ENUM, this routine discovers all consequences and modifies the coset table 
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accordingly. The modifications which have to be made to the coset table are described 
in Leech [11]. 

NCOL is the number of columns of T. 
KX < KY are the original pair of coincident cosets. 
KA < KB are a pair of coincident cosets. 
JA, JB run through the entries of rows KA, KB respectively. 
I indexes the columns of T. 
(1) [Initialize] KA -- KX; KB <- KY; Link around row KB; (remove row from 

active row list). 
(2) [Prepare to process new coincidence] Link KB onto the free row list; Decrease 

active coset count; I *- 0; (set column counter). 
(3) [Compare Ith entries of rows KA and KB] I *- I + 1; If I > NCOL, go to 

(7); JB -- T(KB, I); 
(a) If JB = 0, go to (3); (no new information). 
(b) If JB = KB, JB <- KA; Go to (4). 
(c) If JB # 0 and JB # KB, T(JB, INVCOL(I)) *- 0; Go to (4). 

(T(JB, INVCOL(I)) initially contains KB, which we delete at this stage rather than 
replace by KA to avoid having two occurrences of KA in the same column.) 

(4) [Continue comparison] JA <- T(KA, I); 
(a) If JA = 0, T(KA, I) <- JB and go to (6); (deduction). 
(b) If JA = KB, T(KA, I) <- KA; JA <- KA; Go to (5); (possible new coin- 

cidence). 
(c) If JA # 0 and JA # KB, go to (5); (possible new coincidence). 

(5) [Queue coincidence] Add the pair of coincident cosets JA, JB to the coincidence 
queue if they are not already there; Link around the row of T corresponding to the 
higher numbered of the two cosets. 

(6) [Assign inverse T entry if currently undefined] If T(T(KA, I), INVCOL(I)) = 0, 
T(T(KA, I), INVCOL(I)) *- KA; Go to (3). 

(7) [Fetch next coincidence from queue] If no more coincidences in queue, return; 
Else extract new KA, KB from queue; Go to (2). 

4. The Behaviour of the Todd-Coxeter Algorithm. The Todd-Coxeter algo- 
rithm often displays a great variation in behaviour when applied in apparently 
similar situations. At present, there is little understanding of the reasons for this 
and so we have undertaken an experimental study of the behaviour of the algorithm. 
In this section, we shall summarize some of the more interesting findings from these 
studies, first, to help new users to get the most out of their coset programs and, 
second, in the hope that these examples may form the starting point for theoretical 
studies of the algorithm. 

Apart from execution time, the most important parameter associated with an 
in-core coset enumeration is the amount of space required to store any intermediate 
partial coset table over and above that required to store the final coset table, i.e., 
the parameter r. The reason for focussing attention on r rather than E is that many 
attempted enumerations fail, even though sufficient space is available to comfortably 
store the final coset table, because r is significantly greater than one. Thus, it is of 
considerable interest to examine those enumerations having large r's. 

For this reason, we call an enumeration F-pathological (or simply pathological) 
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if TF is significantly greater than one. As a guide line we shall call an enumeration 
pathological if TF > 1 1. The reason for using the Felsch algorithm here is that it 
most closely approximates the hand method for enumerating cosets and also it has 
been observed that if TF > TA for one of the major machine TC algorithms, A, cur- 
rently in use, then TF is usually close to TA. In a study by one of us (Watson) of nearly 
300 enumerations, it was found that MF = I (i.e., TF = 1) in more than 80 per cent 
of the cases. (These enumerations were chosen so that no relator had a proper subword 
equal to the identity.) 

While this definition of pathological suffers from the drawback that there un- 
doubtedly exist enumerations which are pathological with respect to this definition 
but which are not "absolutely pathological", it does serve the purpose of identifying 
those enumerations which present difficulties to current coset enumeration algo- 
rithms. 

The enumeration of the cosets of subgroup (h1, , hr) in the group G will be 
denoted by G I (h1, , hr). If the subgroup is the identity, we write G I E. It will 
be seen later in this section that the order in which the relators of G are applied to 
a coset can have a significant effect on HLT and lookahead type programs. Thus, 
unless otherwise stated, it will be assumed that relators are applied to a coset in 
order of increasing relator length with relators having the same length being processed 
in the order in which they are written down. It should be noted that different im- 
plementations of a particular form of the TC algorithm (e.g. the Felsch algorithm) 
may lead to slight variations in M and T. As ML and TL are not unique, we shall 
denote the smallest value of ML, for which an enumeration will complete, by M-L 

and the corresponding value of TL by TL. Similarly, the corresponding execution time 
will be denoted by tL. 

In this section, we use standard notation when writing generators and relations 
so that if w1 and w2 are words in the generators of a group G, we write [w1, w2] for 
w;1w2 wlw2 and W1W2 for w2jlwlw2. Also, if (P is a set of relations and R is some word 
in the same generators as the words of (P, we write (P + R for the relations (P, R = 1. 

4.1. Comparative Behaviour of Todd-Coxeter Programs. In Tables 3 and 4, we 
compare the performance of the Felsch, lookahead and HLT forms of the TC algo- 
rithm. The HLT statistics were obtained by giving the lookahead program of Section 
3.2 sufficient storage so that lookahead would not be used.* The Felsch algorithm 
was implemented using the same data structures and coincidence subroutine as the 
lookahead program of Section 3.2. 

Table 3 contains a number of nonpathological enumerations. It can be seen that 
in, each case, MF = I, and, except for (4, 612, 12) + [a-', b]3 I E, ML does not differ 
by more than one from I. Note the wide variation in r,, ranging from 1.00 for 
Weyl Bf I E to 7.57 for PSL3(4) I(a). 

Table 4 contains a number of pathological enumerations. In eight out of twelve 
examples, ML is less than MF. In the case of PSL2(11) E, TF = 1.61, while TL = 

1.00. The Neumann, Campbell and Macdonald presentations give rise to extremely 
pathological enumerations. The reason for this appears to be as follows. When the 
TC algorithm is doing an enumeration G I H, it must in effect find all the relations 

* Note that, using the program of Section 3, MI, and T,, may vary slightly with the available 
space whenever T,, exceeds the number of cosets which can be stored in the available space. 
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TABLE 1 
Definition of some sets of defining relations 

Order of 
Designation group Ref Remarks Defining relations 

El 1 Due to B. H. t-Ert -2 -1 -2 Sr ts F2 = 1. 
Neumann 

Cox 3,000 [4] a6 = b6 = (ab)2 = (a2b2)2 

(a3b3)5 = 1. 
B2.4 4,096 [6a] 2-generator a' = b4 = (ab)' = (a-'b)4 = 

Burnside group (a2b)4 = (ab2)4 = (a2b2)4 = 

of exponent 4 (a 'bab)4 = (ab-'ab)4 = 1. 
S7 5,040 [6] Symmetric a' = b= (ab)6 = [a, b]3 = 

group S7 [a2, b]2 = [a3, b]2 = 1. 
PSL2(l1) 660 [5] Simple all = b2 = (ab)3 (a4ba-5b)2 =1 

PSL2(17) 2,448 [6b] Simple a= b2 = (ab)4 = (a2b)3 = 1. 
PSL3(4) 20,160 [18] Simple a5 = b3 = (ab)4= (a'ba'b'ab)3 

= ba2ba -2b Va 2b 'a2babl la' 
= 1. 

M,,1 7,920 [6a] Mathieu simple a" b = b c4 = (a'c2)3 = (bc2)2 
group M, = (abc)3 = b'aba' = c'bcblY2 

= 1. 

M,, 1 7,920 [6b] Mathieu simple a" b' = c4 = (ac)3 = clY2 
group M,, = b-'aba-' = 1. 

J2 604,800 [16] Hall-Janko a3 = b3 = C3 = abab'a'lb- = 

simple group (ca)5 = (eb)' = (cb-lcb)2 
a-'baca 'ba -'a1 lb'ac' - 

aba-'caba'6Clab-'a-c'= 1. 
J3 50,232,960 [10] Higman-Janko- a2 = c2 = bs = (ac)3 = (bc)2 

McKay simple abab'4ab3 = S2 = t2 = (sa)2 = 

group (SC)2 = (at)2 = (bt)3 = b5tb-'t 
sbsb4 = (ct)4s= (b2st)3 = 

(b-2ctb4ct)2 = b2tb'labtb 2a 

b- 2ab 3ctab2ctb3ab3ctactb7ab4ct 
= 1. 

J3* 150,718,880 [16] Maximal Generated by a, b, c, s, t and z with 
covering group a, b, c, s and t subject to the same 
of J3 relations as in J3 except that the 

last relator has z-1 appended and 
the following additional relators 
are added: 
z3 = [a, z] = [b, z] = [c, z] = 

[s, z] = [t, z] = 1. 
Neu 40,320 [19] a3 = b3 = c3 = (ab)5 = (a-'b)5 

= (ac)4 = (ac' )4 = 

ab-'abc-lacac-' = (bc)3 = 

(b c)4 = 1. 
Weyl B6 46,080 [6] Weyl group of a2 = b2 = c2 d2 = e2 = 2= 

Lie algebras (ab)3 = (ac)2 = (ad)2 = (ae)2 
B6 and D6 (af)2 = (bc)3 = (bd)2 = (be)2 = 

2 = (cd)3 = (ce)2 = (Cf)2 = 

(de)3 = (df)2 = (ef)4 = 1. 
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TABLE 2 

Definition offamilies of defining relations 

Designation Reference Defining Relations 

G P, q, r Coxeter [5] a' = bq = = (ab)2 = (bc)2 = (ca)2 = 

(abc)2 = 1. 
(1, m I n, k) Coxeter [5] a' = bV = (ab)' = (a-lb)k = 1. 
(1, m, n; q) Coxeter [5] a' = b7n = (ab)n = [a, b]2 = 1. 
((1, m, n; p)) Coxeter [5] a2 = b2 = C = (ab)' = (bc)t = (ca)' = 

(abc)' = 1. 
(1, m, n) a' = bV = (ab)' = 1. 
G(a, d) Macdonald [15] b-la-lbab-laba-a = a-'b-'aba-'bab- = 1. 
Cam(n) Campbell [3] r 'srsr-s- = s n-rsrs-r' = 1. 

which hold in G modulo H. Presumably then, the enumeration will be pathological 
when some of the relations modulo H can only be deduced by lengthy algebraic 
argument from the given defining relators for G. This is illustrated by the following 
example due to John Leech. The relations of (8, 7 1 2, 3) imply (a2b4)6 = 1, but this 
is very difficult to prove (Leech and Mennicke [14], Leech [11]). From Table 4 it can 
be seen that the enumeration (8, 7 1 2, 3) 1 (a2, a-1b) is pathological with MF = 1302. 
However, MF is only 448 for the enumerations 

(8, 7 i 2, 3) + (a2b4)6 | (a2, a b) and (8, 7 1 2, 3) i (a2, a-b, (a2b4)6) 

The Macdonald presentations G(a, d) are highly pathological for most values 
of a and A. If the orders of the generators a and b are added as relations then there 
is a dramatic reduction in the degree of difficulty of the enumerations, suggesting 
that it is much easier for current versions of the TC algorithm to deduce relations 
in G from this extended relation set. Further, it appears to be a difficult task to 
deduce the orders of a and b in G(a, A) by hand, except in a few special cases. 

The Macdonald groups are also the only family of groups we know which give 
rise to enumerations for which TH << TF. Thus the enumerations 

G(a, 13) I ([a, b], [b, a-'], [a-', b-], [b-', a]), 

where a = -2, -1, 3, 4 and A is odd, become extremely difficult for the Felsch 
algorithm as increases but remain quite easy for the HLT algorithm. For example, 
if a = 3, A = 21, then the index is 40 and MF = 16,063, TF = 16,067 while MH = 84, 
TH = 91. This is an example of a situation where the HLT method of introducing 
new cosets is far superior to the Felsch method. This was verified by Alford who 
produced a Felsch program which used the HLT method of introducing new cosets. 
Applying this program to the above enumerations resulted in their completion 
with MF equal to the index. Unfortunately, when this program was applied to other 
groups, enumerations became much harder than when the usual Felsch method of 
introducing new cosets was used. 

In the case of Cam(3), the addition of the orders of the generators r and s as 
extra relations does not significantly decrease the difficulty of the enumeration 
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Cam(3) I E. However, the addition of the relation (rs)3 = 1 causes MF to drop to 
120. The critical missing relations in the case of the group of Neumann are currently 
unknown. 

On the basis of the evidence presented in Tables 3 and 4, it appears that the 
lookahead algorithm can usually perform an enumeration in about the same space 
as required by the Felsch algorithm and occasionally in significantly less space. 
We now compare the algorithms with respect to execution time. We first note that 
the ratio tA/tB of execution times for TC algorithms A and B can vary a certain 
amount from machine to machine. From Table 3, it can be seen that the Felsch 
and lookahead (- ) execution times are roughly comparable for nonpathological 
enumerations. The Felsch algorithm tends to be faster when the relators consist 
of words raised to fairly large powers (e.g., (30, 30 1 3,10) + a3b3 1 E). In the case of 
pathological enumerations, Table 4 indicates that tF is typically three times tL (and 
t,). How then does the lookahead algorithm compare with the HLT algorithm? We 
first note that if ML = MH then the algorithms are the same so that times are identical 
in this case. As ML is successively reduced until its minimum value ML is reached 
the following behaviour of the corresponding execution time tL is observed. 

As ML is reduced to a value slightly less than MH so that lookahead has to be 
used, tL increases slightly. Soon however, tL begins to decrease with decreasing 
ML until it reaches a minimum and then begins to increase again. The value of tL 

continues to increase until ML is reached, with the rate of increase becoming larger 
as one gets closer to ML. The final value of tL, t L, ranges from a value significantly 
less than tH to a value of two or three times greater than tH on rare occasions. Two 
examples illustrating the behaviour of tL are given in Table 5. In this table, 1 refers 
to the number of times lookahead is used. In Table 5(a), we see that for the enumera- 
tion (8, 7 1 2, 3) 1 (a2, a- lb), tL first increases slightly and then decreases until it is 
about 75 per cent of tH and finally in the space of 30 cosets increases to a value about 
20 per cent greater than tH. Table 5(b) summarizes the behaviour of tL for the enu- 
meration M,"" I (a). (Note that the relators of M,'' are not processed in order of 
increasing length.) Here, -L is more than twice tH. 

The reasons for this variation in tL are quite clear. The initial slight increase is 
due to the first use of lookahead. As ML is reduced, TL also gets smaller so that the 
total number of cosets that have to be processed decreases. However, as ML ap- 
proaches ML, the lookahead phase has to be used substantially more so that the 
average work done per coset roughly balances the reduction in the number of cosets 
introduced. To summarize, then, unless a value of ML close to ML is used, the time 
tL will either be significantly less than tH or close to tH. If a value of ML close to ML is 
used, then, in some cases, tL will be significantly greater than tH. 

Generally speaking, the Felsch algorithm is competitive with the HLT and look- 
ahead algorithms with regard to execution time, in situations where the defining 
relators consist mainly of words raised to reasonable powers. 

In practice, when using the lookahead program, one rarely chooses a value of 
ML close to ML (since one does not know ML in advance), so that its execution time 
performance is usually much better than indicated in Tables 3 and 4. For example, 
if in the J* enumeration of Table 3, ML is set equal to 22,956, then tL drops from 
890 seconds to 472 seconds. 

4.2. Effect of Permuting Relators and Permuting the Letters of Relators on the 
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TABLE 5(a) 
Variation of time with maximum table size for (8, 7 1 2, 3) 1 (a2, a-lb), with relators in the order 

presented 
(Times are given in CDC 6600 seconds) 

ML 2,176 2,100 1,900 1,700 1,500 1,300 1,250 1,240 1,225 1,220 
TL 2,626 2,531 2,288 2,009 1,744 1,498 1,448 1,461 1,441 1,437 
tL 0.927 0.934 0.880 0.822 0.766 0.712 0.704 0.898 0.898 1.093 
1 0 1 1 1 1 1 1 2 2 3 

TABLE 5(b) 
Variation of time with maximum table size for M(1) I (a) 

ML 4,201 3,900 3,600 3,300 3,000 2,615 2,500 2,300 2,100 1,900 
TL 6,331 5,755 5,318 4,635 4,312 3,862 3,728 3,508 3,308 3,710 
tL 2.015 2.016 1.957 1.928 1.894 1.881 1.912 1.941 1.980 2.191 
/ 0 1 1 1 1 1 1 1 1 1 

ML 1,800 1,600 1,400 1,300 1,200 1,100 1,000 900 800 750 
TL 3,373 2,412 2,189 2,538 2,079 1,995 1,862 1,769 1,470 1,405 
tL 2.191 2.242 2.296 2.362 2.691 2.863 3.140 3.349 4.426 5.038 
1 2 2 2 2 3 4 5 5 8 10 

HLT Method. It has been found that the order in which the relators of a presenta- 
tion are processed by the HLT algorithm can have a significant effect on the number 
of redundant cosets introduced. As a general rule, it is found that the best perform- 
ance is achieved when the relators are processed in order of increasing length. In- 
tuitively, the reason for this is that short relators are less likely to introduce redundant 
cosets than long ones. New information deduced when applying the short relators 
to coset i sometimes means a reduction in the number of new cosets which must 
be defined when applying the long relators to coset i. 

We illustrate this effect with several related presentations for the group ((5, 4, 7; 3)), 
which collapses to the identity, in Table 6. Recall that ((1, m, n; p)) = gp (a, b, c a2 = 

b = C' = (ab)1 = (bc)m = (ca)' = (abc)' = 1). This can be written in the alternative 
form 

m, n; p))* = gp(x, y, I X = Y. = Zp = (xy)1 = (yZ)2 = (ZX)2 = (XyZ)2 1). 

In the table, TH denotes the total number of cosets defined when the relators 
are applied to a coset in the order in which they are written down above, and TH, 
the total number of cosets when the relators are applied in order of increasing length. 
The enumerations are all performed over the trivial subgroup. In case 2, we see that 
the number of cosets defined has dropped by 19 per cent. 

It should be noted that applying relators in order of increasing length does not 
always lead to the fewest cosets being defined. However, in most situations where 
we have found that it is not the optimal ordering, we have observed that the difference 
in total cosets defined between the optimal arrangement of relators and the ordered 
arrangement is insignificant. Thus, the best strategy is to set the relators up so that 
they are processed in order of increasing length. 
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TABLE 6 
Effect of ordering relators 

Enumeration Tf H (TH - TH)/TH 

1 ((7, 5, 4; 3))* I E 27,082 22,615 0.16 
2 ((4, 5, 7; 3))* IE 16,232 13,199 0.19 
3 ((5, 4, 7; 3))* E 15,510 12,681 0.18 
4 ((5,4,7; 3)) IE 6,012 5,760 0.04 
5 ((4, 5, 7; 3)) E 6,018 6,036 0.00 

TABLE 7 
Effect of permuting the letters of the relators of G(2, 2) on TH 

0 1 2 3 4 5 6 7 8 

0 459 516 611 850 293 422 514 703 355 
1 460 664 824 935 518 497 757 997 592 
2 493 532 521 915 490 629 2219 1153 435 
3 1211 352 507 1530 513 855 1737 1466 623 
4 345 296 309 504 587 532 514 377 315 
5 341 579 531 651 511 1034 701 607 273 
6 438 1174 1440 1079 756 721 1421 732 375 
7 432 562 891 1799 396 624 872 625 400 
8 398 488 351 733 379 344 497 595 365 

If R is a relator in G, then any cyclic permutation R' of R is obviously a relator 
in G equivalent to R. If we consider the set of presentations for G obtained by taking 
different relative cyclic permutations of the letters of the relators of a presentation 
61 of G. then, sometimes, a large variation in TH is noted. For example, consider the 
trivial Macdonald group G(2, 2) written 

G(2, 2) = gp(a, b I bla-lbab-laba-2 = a-lb-laba-lbab-2 = 1). 

Table 7 contains the values of TH for all distinct permutations of the two relators 
of G(2, 2). The ith column contains the effect of rotating relator 1 left i places while 
the jth row contains the effect of rotating relator 2 left j places. 

The best result, TH = 273 (row 5, column 8), is obtained when G(2, 2) is written 

G(2, 2) = gp(a, b I a'b-la-'bab-laba-1 = bab-2aa-b-'aba-1 = 1), 

i.e., when the two relators agree on the last four letters. The worst result, TH, = 2,219 
(row 2, column 6), is obtained for 

G(2, 2) = gp(a, b I ba-2b-la-'bab-la = aba-lbab-2a-b- 1 = 1). 



THE TODD-COXETER ALGORITHM 481 

Note that there is a factor of 8 between the best and worst results! The minimum 
values of TH are obtained when the relators are permuted so that one of the following 
arrangements results: 

(a) The first four letters of each relator are identical. 
(b) The last four letters of each relator are identical. 
(c) The word formed by the first four letters of one relator is the inverse of the 

word formed by the last four letters of the other relator. 
These arrangements imply that, usually, fewer cosets have to be defined in order 

to complete a relator cycle at coset i. That this behaviour is not peculiar to groups 
having a very small number of relators can be seen by considering the following 
presentation for the Hall-Janko group J2 (McKay and Wales [16]): 

J, = gp(a, b, c I a3 = b = c3 = abab alb1 = (ca)5 = (cb)5 

= (cb lcb)2 = a lbaca lbac 'a-lb-lac-1 

= aba-1caba-1c-1ab1a-1cV = 1). 

Enumerating the cosets of (a, c, b-1cb) of index 315 and considering all per- 
mutations of the last two relators, we find that TH varies from 1575 to 4255 cosets. 
The best result is obtained when the second last relator is rotated left 7 places, the 
last relator is rotated left 11 places, and the order of the two relators is interchanged. 
The worst result is obtained when the second last relator is rotated left 1 place and 
the last relator rotated left 5 places. 

It should also be emphasized that the order in which relators of equal length 
are processed can have a major effect on MH and TH. For example, still considering 
J2 I (a, c, b- cb), if we rotate the second last relator left 7 places and the last relator 
left 5 places, we get MH = 931, TH = 2,038. If now the order of these two rotated 
relators is interchanged, we get MH = 2,380, TH = 3,357. 

Finally, we note that if the inverses of the two relators of Cam(3) are used rather 
than the given relators, then MH increases by 20 per cent while ML increases by 
about 10 per cent. 

The operations of changing the order in which relators are processed and per- 
muting the letters of relators have little or no effect on the Felsch algorithm. However, 
as the lookahead algorithm defines cosets the same way as the HLT algorithm when 
in the defining phase, these two operations can have an important effect on the 
lookahead algorithm, and in particular on the value of ML. 

4.3. Effect of Redundant Relators. Given a set of defining relations 61 for a 
group G, a relation R &E is said to be redundant with respect to 61 if R can be de- 
duced from the set of relations 6 with the relation R deleted. The presence of a 
number of redundant relators in a presentation often facilitates the work of the TC 
algorithm, particularly, if the redundant relators are not trivial consequences of 
the other relators. The reflection group Weyl B6 and the Janko group J3 in Section 
4.1 are illustrations of this. In Section 4.1, we also noted the effect of adding certain 
critical redundant relations to some pathological enumerations. 

On the other hand, the presence of too many long redundant relators can cause 
the definition of unnecessary cosets apart from the extra processing time involved. 
This is nicely illustrated by the following presentation for PSL2(25) of order 7,800, 
which is due to Beetham [1]. 
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PSL2(25) = gp(a, b, c, d I a5 = b5 =c5 = d5 = [a, b]= [cd] 

= (ac)2 = (ab-d -2)2 = (a2c- 2)2 

= (b2c-1d)2 = (bc-2d2)2 = (a-2bcd)2 

= (a- 1bc2d-1 )2 = (a2b-2d-I)2 

= (a-2b-lc-ld2)2 = (ab_2c2d)2 

= (a2b2cV-d-2)2 = (ab2c-2d-2)2 =1) 

The last five relators are redundant. Let us denote the presentation of PSL2(25) 
formed by removing the last i relators from the above presentation by p"i, where 
i = 0, 1, 2, 3, 4, 5. We summarize the effect of removing the last five relators one by 
one in Table 8. In each case the enumerations were performed over the subgroup 
H = (a, b, d- lb- 1c2), which is the normalizer of the Sylow 5-subgroup. 

It can be seen that the presence of the fourth last relator makes the enumeration 
much easier. However, the addition of further redundant relators causes the enumera- 
tion to become steadily more difficult. In general, a pathological presentation P 
can be greatly improved by the addition of the right redundant relators. (See Section 
4.1.) Although one may have no idea as to what the critical missing relators are, 
it is sometimes worthwhile adding any further known relators which are not im- 
mediately derivable from W. 

On the other hand, the addition of trivially redundant relators, such as cyclic 

permutations and inverses of cyclic permutations of relators, to a presentation, 
seldom helps in the case of a pathological enumeration. As far as the HLT method 
is concerned, the additional relators will change the values of MH and TH, because 
of the different order of coset definition. However, this change is not necessarily 
an improvement and the execution time usually increases because of the increased 
processing per coset. Even if such redundant relators are used only in the lookahead 
phase, little advantage is gained, for if a cyclic permutation of relator R gives a 
deduction when applied to coset i, then that same deduction must be made when 
relator R itself is applied to some other coset j. 

Unfortunately, it is usually difficult to derive useful additional relations by hand. 
However, it is often possible to use the coset enumeration process itself to derive 
additional relations. A simple minded method of doing this consists in doing a partial 

TABLE 8 

Effect of removing redundant relators on a presentation for PSL2(25) 

Enumeration I MH TI! Tj j J H 

P(O) H 26 986 1416 38 54 

p(l) H 26 983 1362 38 52 
p(2) H 26 789 1075 30 41 
P(3) I H 26 617 853 24 33 

P(4) I H 26 487 673 19 26 
P(5) IH 26 929 1177 36 45 



THE TODD-COXETER ALGORITHM 483 

enumeration of the cosets of the identity using the Felsch method and examining 
those cosets which are found to be coincident. If i and j are coincident cosets, it is 
a simple matter to read from the partial coset table, coset representatives w(i) and 
w(j) for i and j, to obtain the relation w(i) = w(j). The most promising of such re- 
lations are added to a, and either the above process is repeated to deduce further 
relations or the enumeration of cosets of the desired subgroup is attempted. 

As an example of this process, consider the presentation (due to Brunner [2]): 

C29 = gp(a, b I bab2(abF')2a2 = (b2a)2baba-2 = [a, b]2 = 1) 

of the cyclic group of order 29. Using Felsch's method to enumerate the cosets of 
the identity, 15 redundant cosets were found during the definition of 14,000 cosets. 
One of the corresponding relators found was 

4 -23 12 a ba b a b 

Enumerating the cosets of (a) (index 1 in C29), we find that MF drops from 1084 
to 557 with the addition of the above relator. 

The Felsch algorithm is preferred when trying to deduce new relations this way 
because it minimizes the number of redundant cosets corresponding to unimportant 
relations in the group. 

A more sophisticated method of deriving new relations from coincidences is 
described in Leech [13]. Unlike the above method, his method can be used to derive 
relations corresponding to coincidences which occur when enumerating the cosets 
of nontrivial subgroups. 

4.4. Behaviour of the TC Algorithm with Respect to Different Presentations of 
the Same Group. It is of considerable interest to take a number of different presenta- 
tions for some group G and study the behaviour of the TC algorithm over this set 
of presentations. 

We begin by examining the effect of the length of relators. Intuitively, we would 
expect that the presence of long relators would lead to the introduction of propor- 
tionally more redundant cosets and this effect is illustrated by the four presentations 
of the symmetric group S5 of order 120, given in Table 9. In each case, the cosets 
of the identity have been enumerated and we tabulate the number of Felsch redundant 
cosets RF, and the number of HLT redundant cosets RH. In addition, we tabulate 
the maximum relator length m and the mean relator length mn. Note, in particular, 
the behaviour of the first three presentations which are virtually identical except 
for the last relator. 

In Table 10, we compare the behaviour of the algorithm with respect to eleven 
different presentations of the simple group PSL2(13) of order 1092. In each case, 
the cosets of the identity have been enumerated. It can be seen that while there is 
considerable correlation between the degree of difficulty for the Felsch and HLT 
algorithms, the correlation is by no means complete. For example, though presenta- 
tion 1 is by far the worst for Felsch, it is nowhere near the worst for the HLT method. 
Also, there is a fairly high correlation between m and MH. (For a discussion of some 
of these presentations see Leech [12].) 

As noted earlier, the HLT algorithm is particularly susceptible to the ordering 
of the relators and the relative ordering of their letters. Thus, we would expect that, 
if these effects could be removed, there would be an even higher correlation between 
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TABLE 9 

Behaviour of algorithms with respect to different presentations of S5 

Presentation m RF R11 

1 (a4 = b1 = (ab)2 = (a-Ib)3 = 1) 6 5 0 3 
2 (a5 = b' = (ab)2 = (a2b2)2 = 1) 8 5.75 7 35 
3 (a5 =b4 = (ab)2 = (a2b2)3 = 1) 12 6.25 9 112 
4 (a2 = b5 = (ab)4 = [a, b]3 = 1) 12 6.75 7 26 

TABLE 10 

Behavior of algorithms wit/i respect to different presentations of PSL2(13). 
Each enumeration is over the identity so that the index is 1092 ill each case 

Presentation Mm 1 t MF Met TF T1l TF TI! 

1 G3,713 13 6 2,519 4,654 2,519 7,509 2.30 4.3 
2 (a7 = b2 = (ba)3 = [b, a]7 = 1) 28 11 1,732 5,455 1,824 6,784 1.58 5.0 
3 (a2 = b3 = (ab)7 = [a, b17 = 1) 28 12 1,590 6,132 1,648 8,826 1.45 5.6 
4 (a2 = b3 = c7 = abc = (cba)7 = 1) 21 7 1,565 10,692 1,886 17,211 1.43 9.8 
5 (a3 = b7 = (ab)2 = (a2b2)7 = 1) 28 10 1,578 12,782 1,619 23,082 1.44 11.7 
6 (a7 = b2 = (ab)3 = (a b)7 = 1) 28 11 1,399 3,337 1,534 4,408 1.28 3.1 
7 (a = b7 = (ab3)2 = (ab2)3 = 1) 9 8 1,271 1,869 1,506 2,454 1.16 1.7 

8 (a7 = b2 = (a2b)3 = (ab)7 = 1) 14 8 1,092 1,245 1,180 1,587 1.00 1.1 
9 (a7 = b7 = (ab)2 = (a-'b)3 = 1) 7 6 1,092 1,498 1,121 1,856 1.00 1.4 

10 (a7 = b2 = (ab)6 = (a2b)3 = 1) 12 7 1,092 1,092 1,153 1,264 1.00 1.0 
11 (a2 = b3 = (ab)7 = [a,b]6 = 1) 24 11 1,092 1,530 1,107 2,848 1.00 1.4 

m and M, and between TF and raj. Then, we are faced with the central problem: 
Why are the first seven presentations bad compared to the last four? In particular, 
consider presentations 3 and 11, where the only difference is that the last relator in 
3 is [a, b]7 while in 11 it is [a, b]'. 

We conclude this section with two further observations. The effect of adding 
certain redundant relations to the presentations G(a, 3) and Cam(3) has been noted 
in Section 4.1. Secondly, if the relator (a-6bab)' in the presentation of the Burnside 
group B2,4 is replaced by the relator [a, b]4 (still giving the same group) when enu- 
merating the cosets of the identity, then T.. drops from 5,022 to 4,282 (Ml is 4,096 
in both cases), while M, drops from 12,386 to 7,333. 

4.5. Behaviour of the Algorithm with Respect to Different Subgroups of a Fixed 
Group. In this section, we suppose that we are given a fixed presentation of a group G 
and we shall consider two questions: 

(a) How does the difficulty of an enumeration depend upon the subgroup chosen? 
(b) How does the difficulty of an enumeration depend upon the subgroup gen- 

erators used? 
The answer to the first question, in general, is that T,, and -r, remain fairly con- 

stant with varying index. This is illustrated by the groups G s7' 13 
2 M and (8, 7 1 2, 3) 

in Table 11. Note, however, that the enumerations 
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TABLE 11 
Behaviour of the algorithm with respect to different subgroups 

Enumeration I MF MH TF TH T F Ti 

G3,7,131 E 1,092 2,519 4,654 2,519 7,509 2.30 4.3 
G3,7,131(a) 364 859 1,628 859 2,774 2.36 4.5 
G3,7,13 (b) 156 378 739 379 1,182 2.42 4.7 
G3,713(C) 84 154 354 154 509 1.83 4.2 

M(1) 1(ac) 2,640 3,878 8,952 5,165 16,292 1.47 3.4 
M(1)I (C) 1,980 2,580 6,027 3,843 13,292 1.30 3.0 

M1 (b) 1,584 2,851 5,134 3,419 10,386 1.80 3.2 
(2) (a) 720 1,562 3,027 1,932 5,130 2.17 4.2 
1 1 (a4, b, C2) 12 36 69 39 82 3.00 5.7 

(8,712,3)1 E 10,752 26,270 49,301 26,314 57,468 2.45 4.6 
(8,7 12, 3)1 (b) 1,536 4,583 7,058 4,585 8,252 2.99 4.6 
(8,7 12, 3)1 (a) 1,344 2,667 5,580 2,688 6,452 1.98 4.1 
(8,712,3)1 (a2, a-lb) 448 1,302 2,253 1,306 2,602 2.90 5.0 

PSL2(17) E 2,448 2,448 2,448 2,677 2,560 1.00 1.0 
PSL2(17) (ab) 612 612 621 661 640 1.00 1.0 
PSL2(17) ([b, a][b, a2]) 144 258 343 271 345 1.79 2.4 

J2 (a, c, cb) 315 315 587 376 1,853 1.00 1.9 
J2 (a, b, bca-c) 100 1,305 12,907 1,315 14,800 13.05 129 

ml, 1 (a , b, C2) and (8, 7 1 2, 3)1 (a2, a-lb) 

are slightly more difficult than the others. The enumeration PSL2(17) ([b, a][b, a2]) 

is significantly more difficult than other enumerations in that group over cyclic sub- 
groups. So, we tentatively conclude that the complexity of a word taken as a subgroup 
generator has an influence on the degree of difficulty of an enumeration. The two 
enumerations in J2 apparently demonstrate that in some situations the choice of 
subgroup has a great effect on the difficulty of an enumeration. However, further 
experiments lead us to believe that this effect is caused by the choice of subgroup 
generators rather than the choice of subgroup. Note that the subgroup (a, b, bCa- c) 

is isomorphic to the unitary simple group U3(3) while the subgroup (a, c, cb) is the 
centralizer of an involution. As yet we have no knowledge of how the embedding of 
subgroup H in G affects the difficulty of enumerations G I H. 

Regarding question (b), we have found that the choice of the generating set for 
the subgroup H can have a great effect on the enumeration G I H. This is illustrated 
in Table 12 by tabulating the values of M,1 for four different sets of generators of 
the normal closure N of element a in Men(5) (recall that Men(n) was defined in 
Section 1). Here, we see that while N is generated by a and ab alone, the addition of 
redundant generators aC, a', a' decreases M,, by a factor of 28. A further example 
is provided by the enumeration (8, 7 1 2, 3)1 (a2, a-lb) where, as noted in Section 4.2, 
the addition of the redundant subgroup generator (a2b')6 greatly decreases the dif- 
ficulty of the enumeration. In the case of the Felsch algorithm, V. Felsch has observed 
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TABLE 12 
Effect of redundant subgroup generators on an enumeration in Men(5) 

Subgroup generators I M TH TH 

Kaab) 4 694 798 173 
(a, ab, a') 4 83 109 21 
(a, ab, ac, ad) 4 83 108 21 
(a ab ac, ad ae) 4 25 31 6 

that the use of the defining relators as redundant subgroup generators seldom hurts 
and occasionally has the effect of drastically reducing the number of redundant 
cosets for a difficult enumeration. For example, in the enumeration B2 4 I E, the 
number of redundant cosets introduced is more than halved. 

The enumeration G I H involves constructing a set of generators for a subgroup 
H of the free group F of rank r (assuming that G is given as an regenerator group) 
such that the coset table of H in F is isomorphic to the coset table of H in G. As 
the images in F of the Schreier generators of H in G generate H, we would expect 
that, if we used the Schreier generators of H, then the enumeration G I H would be 
particularly easy. That this is so in practice is demonstrated by the enumeration 
J2 I (a, b, bC' C). Using a complete set of 201 Schreier generators for the subgroup 
instead of a, b and bC' c, M, dropped from 12,907 to 101 ! 

John McKay reports that if a number of complicated generators are taken for 
H, then the number of redundant cosets occurring in the enumeration G I H can 
depend significantly on the order in which the generators of H are applied to coset 1. 
He suggests that, before proceeding with the enumeration proper, the user should 
apply different permutations of the generators of H to coset 1 and take that per- 
mutation for which the number of cosets introduced so far is a minimum. 

4.6. The Use of External Storage. It is clear that the next major step in the 
evolution of coset enumeration programs must be the development of forms of the 
algorithm which operate efficiently when the coset table is kept on some external 
storage medium such as disk. The present algorithms access the table in a semi- 
random fashion so that the task of developing a form of the algorithm for use with 
external storage will be rather difficult. To illustrate some of the problems, we shall 
describe an experiment in which HLT and Felsch programs running on an IBM 
360/50, were modified so that the coset table was kept on an IBM 1316 disk pack. 

The coset table is broken up into blocks, a small number of which may be resident 
in the core memory at any instant. Whenever a reference is made to a row of the 
coset table not already in core, the block on disk containing this row must be read 
into core, while some block currently in core must be written onto disk in order to 
make room for the new block. The first major choice which has to be made is the 
block size, where a block is to consist of a fixed number of rows of the coset table. 
Table 13 demonstrates the effect of different block sizes on the HLT and Felsch 
algorithms. It is seen that while the number of reads from disk is roughly constant 
with decreasing block size the execution time drops sharply, because of faster transfer 
times, so that smaller block sizes are to be preferred. 
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TABLE 13 
Behaviour of the disk storage versions of the HLT and Felsch 

algorithms with respect to varying block sizes 

Cosets Cosets Reads 
per in from 

Enumeration Method block core disk Time 

G 3, 7, 12 1E HLT 113 4,184 1,204 23m 
G 3, 7, 1 2 JE HLT 54 4,222 1,079 m 
G 3, 7, 1 2 E HLT 35 4,305 1079 8m 
G 3, 7, 1 2 E HLT 25 4,300 1,116 7m 
(5, 2, 6; 6) + (a 2b)4 E Felsch 90 3,870 28,350 227m 
(5, 2, 6; 6) + (a 2b)4 jE Felsch 20 3,860 27,148 112m 
(5, 2, 6; 6) + (a 2b)4 E Felsch 11 3,861 29,425 1O9m 

With virtually random access throughout the coset table, the least recently used 
algorithm was used when replacing a block in core with a block from disk. The 
number of writes to disk can be reduced by associating a flag with each block resident 
in core to indicate whether the block has been changed since its arrival in core. If 
it has not been changed at the time of its replacement, it is, of course, unnecessary 
to copy it onto the disk. This can reduce the number of disk writes by up to a factor 
of 2. For further details see Watson [22]. 

Table 14 contains the statistics from a number of enumerations using disk. It 
can be seen that the slower processing of the Felsch algorithm is more than made 
up for by the smaller ratio of total cosets to cosets in core, so that the Felsch execution 
times are significantly better than the HLT execution times. Even so, the Felsch 
execution times are still unacceptably large. At the time of writing, no similar experi- 
ments have been carried out with a lookahead program but it is clear that new tech- 
niques will have to be used if we are to develop economic disk-based coset enumera- 
tion programs. 

5. Conclusion. We have constructed a simple but powerful coset enumeration 
algorithm, the lookahead algorithm, by adapting the HLT process so that when 
storage space is exhausted, the algorithm halts the definition of new cosets but con- 
tinues to apply the relators to cosets in the hope of discovering coincidences. If 
coincidences are found, the corresponding space becomes free so that the definition 
of new cosets can proceed. The performance of the algorithm is further improved 
by setting up the coset table as a doubly linked list so that free rows corresponding 
to coincidences can be readily recovered. 

In a large number of tests, we have found that the lookahead algorithm is quite 
competitive with the Felsch algorithm with respect to the minimum amount of store 
required to complete an enumeration. Further experiments have shown that the 
HLT algorithm is usually faster than the Felsch algorithm and that the lookahead 
algorithm is as fast or faster than the HLT algorithm except occasionally when one 
is near the minimum store necessary for the enumeration. 
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Further experiments have led to the discovery of a number of presentations and 
classes of presentations which cause the Todd-Coxeter algorithm to perform very 
badly. The existence of such presentations is, of course, related to the unsolvability 
of the word problem for groups. In addition, we have discovered that 

(a) structurally similar presentations can lead to large variations in enumeration 
difficulty; 

(b) the order in which relators are processed and the relative ordering of the 
letters of relators may have a significant effect on the performance of the HLT (and 
hence lookahead) algorithms; 

(c) the presence of certain redundant relators can have a major effect on the 
difficulty of an enumeration; 

(d) the total number of cosets defined in an enumeration is usually proportional 
to the index of a subgroup when one is considering enumerations of different sub- 
groups with respect to a fixed presentation. The choice of generators for a particular 
subgroup and the order in which they are processed can have an important effect 
on the enumeration. 

The two major problems in the area of coset enumeration at present are the 
need for an adequate theory which would enable us to explain in group theoretic 
terms why an arbitrary enumeration is hard or easy, and the lack of a form of the 
algorithm which makes effective use of secondary storage. It is our hope that the 
work described in this paper will form the starting point for attempts at the solution 
of these two problems. 
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